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1. OBJECTIVES

The main goal of this project was to construct a prototype DSP multiprocessing system based on the Texas
Instrument TMS320C40 multiprocessing-capable CPUs and show that it provided adequate performance
on the Rome Laboratory (RL) Speaker Identification (“Spkrid”) code and the Speech Enhancement
(“SEU”) code. The original proposal called for a 8-CPU prototype and the funded project was for
constructing a 4-CPU prototype.

The prototype system that was constructed showed that the computational aspects of the Spkrid code and
the SEU code can be easily met on the 4-CPU prototype. (Atleast one additional CPU, not available inthe
current prototype, is needed for interfacing to the A/D, D/A components.) The bulk of the proposed effort
was involved with the parallelization and porting of the supplied code to the target system, and
instrumenting the system to get performance measures that will indicate how the system will perform in
real-time.

2. HARDWARE CONFIGURATION OF THE PROTOTYPE SYSTEM

The prototype DSP system was based on a development system using four TMS320C40 DSP CPUs
running at 32 MHz. The characteristics of the prototype system, shown in Figure 1, are as follows:

¢ Each CPU has an on-chip RAM of 1 K words, each word being 4 bytes. The program activation stack is usually
implemented entirely within this RAM, since accesses to this RAM is faster than accesses to external RAMs.
Frequently used variables that cannot be allocated within the CPU registers are alsokept within the on-chip RAM.

® Each CPUhasits own private RAM of 16 K words, each word being 4 bytes. This is in addition to the 1 K word of
on—chip RAM within each CPU. Variables local to a CPU are generally allocated in this private RAM. A CPU
accesses its private external RAM using its own set of address/data lines.

® Each CPU also has access to a global shared RAM of 128 K words. Global variables, that are shared among the
CPUs are usually mapped onto the global RAM. A CPU accesses the global RAM using a shared bus ~ there is thus
bus contention and associated delays in accessing the global RAM.

® FEach CPU has an 8-bit wide message passing connection to the other three CPUs.

® FEach CPU also has an 8-bit wide message-passing link to off-board CPUs or other components, such as A/D
interfaces.

® The Hostsystemis a Sun SPARCLX, running SunOS 4.1.3, and is interfaced to the prototype DSP system through
an in-circuit emulator, which communicates with the board via a serial (and relatively slow) JTAG cable.

The C-based compiler and development environment was run on the host. Programs were developed
entirely in C on the host, using the message-passing library routines. The compiled programs were
downloaded onto the 4-CPU prototype and run on the prototype. I/O from the host was confined between
the DSPs and the global memory, since the slow data rate on the JTAG cable precluded I/O at a faster rate.

An attempt was made to interface an Ariel A/D, D/A unit to the prototype system by using one of the free
8-bit wide communication port from a CPU. This involved writing drivers in the assembly language of the
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Figure 1. The Hardware Configuration of the Prototype System

TMS320C40 to allow signals and protocols for the Ariel interface to be followed. The resulting interface,
however, hung often due to noise and signal problems in the wiring and the communication ports, which
were beyond our control. Interfacing circuits were also tried using FPGA based devices, but suffered from
the same problems. The real solution is to use a A/D, D/A card designed specifically for the TMS320C40
systems, which was not available to us. ;

An alternative solution is to use the SPARC host to interface with the Ariel unit and do all signal 1/O
through the SPARC host. This approach was implemented, but the resulting I/O transfer rate between the
host and the prototype was unacceptably slow due to the low data rate through the serial JTAG interface.

3. THE IMPLEMENTATION OF THE SPEAKER IDENTIFICATION CODE ON
THE PROTOTYPE SYSTEM ]

This section describes our approach to the porting and paralleiization of the RL Speaker Identification
program and an evaluation of the performance of the code on the 4-CPU prototype system. In particular,
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we describe the important changes made to the code to facilitate the implementation on the prototype
without compromising any functionality. The performance results reported here also identify the main
cycle sinks in the program in an effort to show where parallelization efforts should be directed if additional
CPUs are available for further performance enhancements.

3.1 The Rome Lab Speaker Identification Program: An Overview

The RL speaker identification (“spkrid”) program uses a two-phased approach torecognize speakers. The
first phase involves “training” the system with samples from known speakers to set up a database of the
features of each speaker. The second phase involves the acquisition of sample data from an unknown
source, extracting its feature and comparing the extracted features against the features stored in the
database to find a match with one of the known speakers. Currently, this recognition phase does notrun in
real-time.

Figure 1 depicts the main steps involved in the training phase. The Ibg_vq algorithm is used to classify the
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Figure 2. The training phase of the spkrid program

features of the speakers. Four feature files are created for each speaker and the data for all speakers is
collected to form a database on a per feature basis. Disk I/O is involved heavily in this phase, since the
extracted features are stored in several files on the disk.

Figure 2 depicts the main steps in the recognition phase. Note that the preprocessing and
feature_extraction steps are same as that of training phase. The feature_extraction generates data about
the four features of the input. For every feature the classify module uses the corresponding feature
database to come up with the most likely identity of the unknown speaker. The report module then uses a
statistical maximum likelihood estimation technique to identify the speaker. Again, disk I/O is required to
access the stored feature files and for storing the results of the match.

3.2 Estimate Of Operational Complexity For The Speaker ID Program

To understand the complexity of the Speaker ID program and identify code sections that need to be
parallelized to meet the throughput requirements, we looked at each of the main modules of the program
and estimated the operation counts. The following flowchart shows the data flow among the main modules
of the Speaker ID program:
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Figure 3. The recognition phase of the spkrid program
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I. Notations:
The following notations are used in the complexity analysis.

ALU = ALU operation (*, +, / etc. - mostly floating point ops)
MEM = memory operation (load or store)

We also assume that the overall performance is dictated mainly by the ALU and MEM operations. Thus,
register—to-register moves and other similar operations are ignored since they do not dominate the code.

I1. Opcounts on a module by module basis:

The CEPS module takes M input samples, and outputs N sets of coefficients; N = M/ W (W = window
width), each set contains Q coefficients (Q = order). Current values used are: W =256,Q=14.

The RASTA and DCEPS modules read in coefficients, and output the same number of coefficients.

Operations per module:

CEPS: 35 ALU, 20 MEM -- per input sample

RASTA: 9 ALU, 11 MEM -~ per input coefficient

DCEPS: 42 ALU, 23 MEM -- per input coefficient

CLASSIFY: 3*C ALU, 2*C MEM -- per input coefficient, per speaker, where C = codebook size

(currently 40)




Number of ops for each set of input/output coefficients:

CEPS: 8960 ALU, 5120 MEM
RASTA: 126 ALU, 154 MEM
DCEPS: 588 ALU, 322 MEM
CLASSIFY: 1680 ALU, 1120 MEM (per speaker)

IIL Total ALU and memory operations:

Approximated formula for total number of operations (assuming current values for parameters):

ALU =M * (40 + 7 * num_speakers )
MEM =M * (23 + 5 * num_speakers )

where M is the number of input samples

The above analysis clearly shows that CEPS and CLASSIFY routines are most compute-intensive, as well
as memory-intensive. Parallelization at a fine grain should thus first target these modules.

3.3 Some Possible Approaches For Parallelizing The Speaker ID Program

In this section, we present various approaches for parallelizing the RL spkrid program. In a later section,
we briefly discuss these schemes to identify the approaches that are best suited for implementation on the
TMS 320C40 based speech multiprocessor prototype.

3.3.1 Application level parallelization

This is the highest level of parallelism where, one processor is allocated to handle one data channel. Full
copies of the application run independently on each processor and there is almost no necessity of inter
processor communication. This approach is suitable if the number of channels monitored and the number
of processors almost match. This approach does not improve the computation time of individual channels,
butincreases throughput of the system by simultaneously processing more than one channel. Ifthe system
offers more processors than channels, clearly, this approach makes poor (zero) utilization of the spare
processors. Also I/O traffic may be high as all processors demand access to all the database files. Figure 4
summarizes this approach.

3.3.2 Pipelined computation

Figure 5 depicts another approach for parallelizing the spkrid program based on the use of pipelining to
overlap the execution of component steps of the program. Inthis approach a pipeline of processors is setup
to perform partial computation on the data and feed the output to the next processor in the pipeline. Figure
5 shows the use of a 4 stage pipeline, each processor P; computing only a specific module out of the
complete computation sequence. Every stage of the pipeline must be able to process input data when itis
available and generate useful output for the subsequent stage before the input is fully available. This
scheme is useful when the spkrid program has to process input samples for recognition on a continuous
basis. In such a case, the computation overlap is across the unique steps required to process each input
sample.
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Figure 5. Pipelined implementation of the spkrid code

Another use of the pipelined scheme will be to “simultaneously” run the spkrid program for different
channels - in this case the pipeline overlap is among the steps for the various channels. If spare processors
are still available, several such pipelines can be setup to increase utilization. The channels can then be
suitably distributed and multiplexed based on the number of pipelines available.

With the pipelined approach, the computation time of each pipeline stage must be approximately equal to
avoid bottlenecks. However, the above breakup may not be useful since some stages such as classification,
require a disproportionately longer execution time. This stage may need to be broken up further, or else
duplicated, so that it does not impose a throughput bottleneck.

3.3.3 Hybrid pipelining

In the pipelined approach, the preprocessing step and, perhaps, the feature extraction steps, have a smaller
computation time compared to the other steps. If multiple pipelines are used, one for each channel, a
common preprocessing (and/or feature extraction) stage(s) can be multiplexed across the channels. This
approach, which we call hybrid pipelining is depicted in Figure 6. This approach helps to even out the
computation time of the stages. Note however, that all the classification stages still demand access to all the
feature database files. This can be a problem if a single disk device is present.

3.3.4 Hybrid pipelining with independent feature classification
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Figure 6. Hybrid, multipipelined implementation of the spkrid code

This technique allocates one processor per feature classification. This approach is depicted in Figure 7.
The I/O traffic can be eased due to this separation. Now each processor needs access to only a specific
feature database to perform the classification.
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"Figure 7. Hybrid pipelined implementation of the spkrid code with independent classifiers

3.3.5 Code level parallelism

This kind of parallelism is achieved by developing parallel code specific to the system architecture. This is
alowlevel of parallelism, popularly known as fine grain parallelism that seeks out concurrent operations at
the level of individual code fragments, statements and expressions. The operational complexity analysis
reported in Section 3.2 seems to suggest that this is possibly the best way to speed up the CEPS and
CLASSIFY routines for a system that allows an adequate number of CPUs. The “adequate number” in this
casehas to be significantly higher than the four CPUs available on the prototype DSP multiprocessor, since
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fine-grain parallelism involves a higher degree of concurrent activity compared to any of the techniques
we have discussed thus far.

Fine-grained parallelism can be exploited to a great extent in the following constructs (among others) ina
typical program:

® Loops
® Nested Loops
e Recurrence relations

Program loops thus provide a good source of low-level parallelism. Speech processing applications have
a profusion of loops in the code. Such loops can be broken into multiple smaller loops, and each loop can
be computed on a different processor. Nested loop computation can also be speeded up to a great extent.
Recurrence expressions can be parallelized by factoring out constants from the expression. The
classificationmodule may benefit from this approach. We give below, examples of parallelizing loops and
recurrence expressions occurring in the classification code. Data dependency analysis and knowledge of
the processor interconnection topology is very essential to generate optimized parallel code. Processor
synchronization must also be ensured for correct computation. An example of code level parallelization is
shown below.

float find mse(double codeword[],double data[],int vect_len)

{
int 1i;
double;
mse = 0.0;
for (i=1l; i<=vect_len; i++)
mse += codeword[i}-datal[i])*codeword{il-data[i];
mse /= vect_ len; .

This code can be parallelized as follows. Suppose there are N=2" processors. Then firstly, each processor
computes alocal value of mse, on data vectors vect_len/N long. Then these mse’s are summed up in nsteps
as follows: In the 1% step processors 0, 2, 4, ..., receive values from 1,3, 5, ..., and add them locally. In the 274
step 0, 4, 8, ..., receive values from 2, 6, 12, ..., and so on. In the n® step, O receives value from 271t
compute the final value of mse.

As another example of fine-grained parallelization, consider the following code:

void lpc_cepstrum (double pe, double a[],int p,double cel])
{

int i, 3j;
ce[0] = log(pe);
cel[l) = -a[l]; /* all others are 0.0 */

for (i=2; i <=p; i++)




for (j=1; 3j<ii; 3J++)
cel[i] == (i-j)*ce(i-jl*aljl;

This computation can be mathematically represented as

Y R :
Ce[l]——-;,- ZJ*ce[]']*a[l—f_l - ali]

=

i-2
celil = --i- G-D*alll*ali- 11+ j*cell * (ali~j1 - all] *afi - 1 - D | -ali]

=

Notice that in the second equation, the computation of ce[i] is independent of ce[i-1]. Thus we have
improved the minimum dependency distance from 1 to 2, and as aresult consecutive ces can be computed
in parallel on 2 processors. Further parallelism can be extracted by unrolling the loop.

-3.4 Parallelization for the TMS 320C40-based Prototype System

The parallelization techniques presented in Section 3.3 are representative of the.techniques that can be
used to parallelize the spkrid program. However, not all of these techniques may be suited for an efficient
implementation on the TMS320C40 based multiprocessor prototype using four CPUs.

Since the 320C40 is primarily a message passing system, parallel implementations at a medium to coarse
grain may be preferred. Also, since the number of communication ports on the TMS320C40 are limited,
one has to be concerned about the resulting topology. The use of a pipelined approach or the hybrid
pipelined approach with independent feature extraction may well be preferred, since it demands a simple
interconnection topology. Thisis, however, notto say that fine-grained approaches cannot be supported at
all - the external shared memory in the TMS320C40 can be used for inter processor communication for
inter-CPU communication for the fine-grained parallelized version of the spkrid program.

In general, for speaker identification in real-time, disk I/O can be avoided and thus disk I/O bottlenecks are
absent. This is because the extracted feature files are typically small in size - small enough to fit inside the
4K internal RAM of each TMS320C40 that performs the classification.

The availability of only four CPUs on the prototype DSP multiprocessor, together with memory size and
connectivity limitations drastically affected our approach to the parallelization of the spkrid program.
First, and obviously, we had to restrict the degree of parallelism to four. This rules out the possibility of
using balanced simple and hybrid pipelined structures, where each pipeline stage performed roughly the
same amount of computation as the other stages. (Recall that the CEP and CLASSIFY modules perform a
significantly larger number of computation compared to the other modules. To balance the activities
among the pipeline stages, each of these modules will have to be broken down into several stages, clearly
requiring more than 4 stages overall and the possibility of implementing each stage on a CPU.
Fine-grained parallelization was also not followed, since four CPUs are not adequate for supporting sucha




level of parallelism. Second, local memory limitations (64 Kbytes per CPU) on each node forced us touse
an approach that did not require large data sets to be simultaneously resident within each local memory
module. The implementation that we finally converged on is described below.

The Unix-based version basically used multiple programs, and piped them together. The DSP-based
version for the 4-CPU prototype essentially takes these multiple programs, runs them on different
processors, and uses the communication hardware to act as the pipes. However, since we only have 4
processors, it was not possible to map each program to a single dedicated processor. Nor was this
necessary, for that matter —— due to the varying amount of computation needed by each program. Rather,
the programs were “multiplexed” as needed on the given processors. This may have inhibited some
amount of parallelism, but other choices were not available.

Our complexity analysis for the Speaker ID program (Section 3.2) had established that the classify()
operation would take the most time, by far. One call to classify is needed for each feature, for a total of 4,
thus far exceeding the complexity of all other routines, including the CEPS module. We split the
classification in half, 2 on processor B and 2 on processor D. Processors A and C performed the feature
extractions. The breakdown of activities for each CPU, which each CPU repeats cyclically, is as follows:

CPU_A: read input samples (from a memory buffer);
do I/0 overlapping;
do cepstrum;
do first derivative of cepstrum;
Send the ‘ceps’ and ‘dceps’ features to CPU_B and CPU_C, in an
interleaved fashion through the communication channels;

CPU_B: calculate windowed cepstrum (a single multiplication per sample};
classify windowed ceps;
classify dceps;
at the very end, send classification results to CPU_D, which computes the
final speaker ranking;

CPU_C: calculate rasta;
calculate second derivative;
Send these two features to CPU_D for classification;

CPU_D: classify rasta;
classify dceps2;
at the very end, accumulate all classification results, compute speaker
rankings;

The communication pattern among the four CPUs are thus as shown in Figure 8.

Even though two types of data are sent over the lines from CPU_A TO CPU_B and FROM CPU_A TO
CPU_C, a single communication channel is used for both data types. (Two communication channels are
available, but a bug in the emulator prevented their concurrent use.) The different features are simply
interleaved (without any “message type” to indicate which feature is being sent; it’s assumed that the two
processors are synchronized using separate synchronization messages). The extracted tables and training
data are all kept within the local memory of the appropriate CPUs.

Animplementation of a DSP prototype with adequate I[/O facilities will require CPU_A to control the A-D
font end, while CPU_D will initiate transfers of the ranking data to the host console.
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Figure 8. Communication patterns in the parallelized Spkrid code for the 4-CPU prototype.
3.4 Performance Of The Spkrid Code On The Prototype

The Parallel Processing Development System (PPDS) on which the prototype was based, unfortunately,
did not include facilities to measure the overall execution time of the parallel implementation, with
communication delays. However, it allowed the execution time of the code on each processor to be
accurately measured in numbers of processor cycles. Since the amount of inter-CPU communications are
sparse and overlapped with the computations, information gleaned from the individual cycle counts are
expected to be quite close to the cycle counts for the overall implementation. Inparticular, the worst-case
latency of a single pass of the Speaker ID program can be estimated as:

cycle count for CPU_A + max (cycle counts of CPU_B, CPU_C) + cycle count for CPU_D

We now present the cycle counts obtained from the profiler for the Speaker ID implementation for the DSP
prototype for the recognition phase. We first present the cycle counts with all optimizations enabled in the
compiler, and - for comparison, present the cycle counts for the unoptimized version. We finally present
the cycle counts for the training phase.

The “inclusive” cycle counts includes the time spent in all functions that are called. The “exclusive” cycle
counts reflect only the time spent in the code of the main function, and excludes the time spent within called
functions. (“BP hits” refers to the number of hits to the branch predictor of each CPU.)

I. OPTIMIZED PARALLEL VERSION OF THE SPKRID PROGRAM: Cycle Counts

a. Cycle counts for CPU_a: optimized

Program Name: /usr2/speaker/jason/new/cpu_a.out

Start Address: 40000000 main, at line 38, ”/usr2/speaker/jason/new/cpu_a.c

Stop Address: 40000389 exit

Run Cycles: 1540988

Profile Cycles: 1540988

BP Hits: 2451

Khkhkhhkhkhkhhhkhhhhhhhhkhhhhhkhdhkr A XTI hk A hhhhdhkhh bk kb hA kA A kA rhhddhhhhhhhkrhkhkh
Area Name Count Inclusive Incl-Max Exclusive Excl-Max

CF main() ' 1 1540981 1540981 15209 15209

CF read_samples() 3 96012 53284 96012 53284

CF io_overlap() 2 173574 97865 173574 97865

CF get_cepstrum() 2 1188216 660114 1177335 654069
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CF derivative () 30 50691 1750 45576 1529
CF get_dceps () 3 61121 31854 9830 6069

**************‘k*'k**********************************************************

BArea Name Count
CF derivative () 30 73%
CF get_dceps () 3 1% === 1
CF read_samples() 3 7% .
CF get_cepstrum() 2 4%
CF io_overlap() 2 4% ==
CF main() 1 2% = ’
***************************************************'k***********************
Area Name Inclusive ‘
CF main() 1540981 99%
CF get_ cepstrum() 1188216 17% !
CF io_overlap() 173574 11% ====
CF read_samples () 96012 6% ==
CF get_dceps () 61121 3% =
CF derivative() 50691 3%
****************************************************************‘k********** 1
Area Name Incl-Max
CF main() 1540981 99% l
CF get_cepstrum() 660114 42% =======s=======
CF io_overlap() 97865 6% ==
CF read samples () 53284 3% =
CF get_dceps () 31854 2%
CF derivative() 1750 <1%

***************************************************************************

Area Name Exclusive
CF get_cepstrum() 1177335 76%
CF io_overlap() 173574 11% =====
CF read_samples() 96012 6% ===
CF derivative () 45576 2% =
CF main () 15209 <1%
CF get_dceps () 9830 <1%

******************************************'k********************************

Area Name Excl-Max
CF get_ cepstrum() 654069 42%
CF io_overlap() 97865 6%
CF read_samples () 53284 3%
CF main() 15209 <1%
CF get_dceps () 6069 <1%
CF derivative() 1529 <1%

****************************'k*********‘k****************‘k*******************

) Area Name Address ‘
CF main() 40000000 5
CF read_samples () 40000112
CF io_overlap() 40000133
CF get_cepstrum() 4000016¢
CF derivative() 40000247
CF get_dceps () 40000268

b. Cycle counts for CPU b: optimized

Program Name: /usr2/speaker/jason/new/cpu_b.out
Start Address: 40000000 main, at line 43, # jusr2/speaker/jason/new/cpu_b.c
Stop Address: 400001e0 exit

12




Run Cycles: 4466203
Profile Cycles: 4466203
BP Hits: 909

KA EKAI A KA IR A I A KK A I AR A A I AR A A I A A I A A A A AR A A I A AR A AR A A A XAk Ik b Ak ke rdhhhhhhd

Area Name Count Inclusive Incl-Max Exclusive Excl-Max
CF main () 1 4466196 4466196 43827 43827
CF classify() 5 4405775 1223812 4405775 1223812

KAAKKKKRK I IAKRKKRKKAKR KRR IRk Rk ARk khkhhhhhhhhkhhhkhhhhhkhhhhkhkhhhhhdhkhhhhhhhhhkhhhkk

Area Name Count
CF classify() 5 83%
CF main() 1l 16% =======

hhkhkhkhkkhhkhhhhhkhhhkhhhhkhkhhdhhhhhhhhhhhkrhhkhhhdrhhhhhhhbhkhhhhhdhhdhhh kbbb hhhhhd

Area Name Inclusive
CF main() 4466196 99%
CF classify () 4405775 98%

LA EEE RS SRR T EEEEEEE RS sREEE LSRR E RS EEREEERRESSE RS EEEE SR

Area.Name Incl-Max
CF main() 4466196 99%
CF classify() ) 1223812 27% ==========

KhkkkhkhkhhhkhkhkhhhkhkhhAhdhhhAhhhhhhhhkhhhhhhhhhhhhhhhhhhArhdhhbhkh kb hdr kb hhhhhhhkhbhrkh

Area Name Exclusive
CF classify () 4405775 98%
CF main() 43827 <1%

Thhkhkhhhhhhhhh kR TAI kAR R AR KA AR KA A A AR AR A A I AR AR I A kAR Ak kA kAT A Ak hkkhkd ok hkhd kK

Area Name Excl-Max
CF classify() 1223812 27%
CF main () 43827 <1% =

B R R g R R g Y e R L]

Area Name Address
CF main() 40000000
CF classify{() 400000fc¢
c. Cycle counts for CPU _c: optimized
Program Name: /usr2/speaker/jason/new/cpu_c.out
Start Address: 40000000 main, at line 42, “/usr2/speaker/jason/new/cpu c.c
Stop Address: 40000351 exit
Run Cycles: 151372
Profile Cycles: 151372
" BP Hits: 819

LR R R R R I

Area Name Count Inclusive Incl-Max Exclusive Excl-Max
CF main() 1 151365 151365 48467 48467
CF get_rasta() 2 34411 18740 34411 18740
CF derivative() 30 50691 1750 45576 1529
CF get_dceps() ’ 4 60767 25527 9476 4950

LR AR R AR SRS RS e R NP R T ]

Area Name Count
CF derivative () 30 81%
CF get dceps() 4 10% ====
CF get_rasta() 2 5% ==
CF main() 1 2% =
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***************************************************************************

Area Name Inclusive
CF main() 151365 =
CF get_dceps() 60767
CF derivative() 50691
CF get_rasta() 34411

********************'k*******'k**********************************************

Area Name Incl-Max
CF main() 151365 99%
CF get_dceps () 25527 16% ======
CF get_rasta() 18740 12% ====
CF derivative () 1750 1%

****************************************‘k**********************************

Area Name Exclusive
CF main () " 48467 32%
CF derivative() 45576 30%
CF get_rastal() 34411 22%
CF get_dceps() 9476 6% =======

**************************************************'k************************

Area Name Excl-Max
CF main () 48467 32%
CF get_rasta() 18740 12% ==============
CF get_dceps () 4950 3% ===
CF derivative () 1529 1% =

******************‘k****************'k***********‘k***************************

Area Name Address
CF main() 40000000
CF get_rasta() 40000113
CF derivative() 400001c4
CF get_dceps () 400001e5

d. Cycle counts for CPU d: optimized

Program Name: /usr2/speaker/jason/new/cpu_d.out

Start Address: 40000000 main, at line 52, 7 /usr2/speaker/jason/new/cpu d.c
Stop Address: 400001da exit

Run Cycles: 4455040

Profile Cycles: 4455040

BP Hits: 162

***************************************************************************

Area Name Count Inclusive Incl-Max Exclusive Excl-Max
CF main{) 1 4455033 4455033 44252 44252
CF classify() 6 4405812 1223812 4405812 1223812

******************************************‘k********************************

Area Name Count
CF classify() 6 85%
CF main() 1 14% ======

***************************************************************************

Area Name Inclusive
CF main() 4455033 99%
CF classify() 4405812 98%

***************************************************************************

Area Name Incl-Max
CF main() 4455033 99%

CF classify() 1223812 27% ==========




***************************************************************************

Area Name Exclusive
CF classify() 4405812 98%
CF main() 44252 <1%

**********************************'k‘k***************************************

Area Name Excl-Max
CF classify() 1223812 27%
CF main() 44252 <1% =

***************************************************************************

Area Name Address
CF main() 40000000
CF classify() 4000011e

. UN—OPTIMIZED PARALLEL VERSION OF THE SPKRID PROGRAM: Cycle Counts

- Included only for reference, to indicate cycle count improvements through optimizations.

a. Cycle counts for CPU_a: unoptimized

Program Name: /usr2/speaker/jason/new/cpu_a.out

Start Address: 4000007c main, at line 38, ”/usr2/speaker/jason/new/cpu_a.c
Stop Address: 40000444 exit

Run Cycles: 2879131

Profile Cycles: 2879131

BP Hits: 2725

***************************************************************************

Area Name Count Inclusive Incl-Max Exclusive Excl;Max
CF ClearMsg () 0 0 0 0 0
CF WaitFor () 14 6439 876 2005 2711
CF CreateMsqg{() 5 12957 3591 12957 3591
CF SendMsg () 10 8164 1089 400 40
CF RecvMsg () 0 0 0 o] 0
CF EndMsqg () 4 1194 301 132 33
CF main() 1 2879124 2879124 2935 2935
CF read samples () 3 118125 65560 118125 65560
CF io_overlap() 2 283065 159553 283065 159553
CF power () 27 111051 4113 111051 4113
CF auto_corr() 217 1795716 66508 1795419 66497
CF 1lpcal() 21 123957 4591 119799 4437
CF lpc_cepstrum() 27 88884 3292 82458 3054
CF get_cepstrum() 2 2344986 1302768 225378 125208
CF derivative() 30 89481 3043 84366 2822
CF get_dceps () 3 107698 55294 17617 10114

Ik kkkhhhkhhhkkhhhhhh bk bk k kA A A A A h bk kA AR A ARk Adkkkkhhhhd bk kb hhhhhhrkk

Area Name Count
CF derivative() 30 16%
CF auto_corr() 27 14%
CF lpc cepstrum() 27 14%
CF lpca() 27 14%
CF power () 27 14%
CF WaitFor() 14
CF SendMsg () 10
CF CreateMsg() 5
CF EndMsg () 4
CF get_dceps () 3 1% ===
CF read_samples() 3 1% ===
CF get cepstrum() 2 1% ==
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I

CF io_overlap()
CF main()

CF ClearMsg{()
CF RecvMsqg ()

o o =N

Ak A A A IR A AT AA R AR F I A AR IR A A A A AR KRR I IAA I AR KA AR A A A AR A A IR AT A AR A A Ak hhh Ak hhdk &k

Area Name - Inclusive

CF main() 2879124 99%
CF get_cepstrum() 2344986 81%
CF auto_corr () 1795716 62%
CF io_overlap() ) 283065 9% ===
CF 1lpca() 123957 4% =
CF read_samples () 118125 4% =
CF power () 111051 3% =
CF get_dceps() 107698 % =
CF derivative () 89481 3% =
CF lpc_cepstrum() 88884 3% =
CF CreateMsqg () 12957 <1%
CF SendMsg () 8164 <1%
CF WaitFor () 6439 <1%
CF EndMsg () 1194 <1%
CF ClearMsg() 0 %
CF RecvMsg () 0 0%

Kk kA A I AN I AR AR AAR KA IAAK KA A I AR KA A A KRR KK ARA A A AR A A R AR AR A AR AR AR A h Ak kh kK

Area Name Incl-Max
CF main () 2879124 99%
CF get_cepstrum() 1302768 45%
CF io overlap() 159553 5% ==
CF auto_corr() 66508 2%
CF read_samples () 65560 2%
CF get_dceps() 55294 1%
CF lpca() 4591 <1%
CF power () 4113 <1%
CF CreateMsg() 3591 <1%
CF lpc cepstrum() 3292 <1%
CF derivative () 3043 <1%
CF SendMsg () 1089 <1%
CF WaitFor () 876 <1%
CF EndMsg () 301 <1%
CF ClearMsg() 0 0%
CF RecvMsg() 0 0%

A AR IR K I AR I A KK AR KA KA KR A KA KRR I I AR AR A A AR A I A AR K I AR AR RA A AR AR I AR AR AN A A Ak Ak Ak kX

Area Name Exclusive

CF auto_corr() 1795419 62%

CF io_overlap{() 283065 9% =====
CF get_cepstrum() 225378 7% ====
CF lpca() 119799 4% ==
CF read_samples () 118125 4% ==
CF power () 111051 3% ==
CF derivative() 84366 2% =

CF lpc_cepstrum() 82458 2% =

CF get_dceps () 17617 <1%

CF CreateMsg() 12957 <1%

CF main() 2935 (1%

CF WaitFor() 2005 <1%

CF SendMsg () 400 <1%

CF EndMsg () 132 <1%

CF ClearMsg () 0 0%

CF RecvMsg () 0 0%
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*********'k*****************************************************************

Area Name Excl-Max

CF io_overlap() 159553 5%

CF get_cepstrum() 125208 4%

CF auto_corr() 66497 2% =s==ss==s=ssm==
CF read samples{() 65560 2% ====s=ss=======
CF get_dceps () 10114 <1% ==

CF lpca() : 4437 <1% =

CF power () 4113 <1%

CF CreateMsg{) 3591 <1%

CF lpc_cepstrum() 3054 <1%

CF main() 2935 <1%

CF derivative() 2822 <1%

CF WaitFor () 277 <1%

CF SendMsg() 40 <1%

CF EndMsg () 33 <1%

CF ClearMsg () 0 0%

CF RecvMsg() 0 0%

***************************************************************************

Area Name Address
CF ClearMsg() 40000000
CF WaitFor () 40000017
CF CreateMsqg() 40000023
CF SendMsg () 4000003a
CF RecvMsg () 40000051
CF EndMsg () 40000069
CF main() 4000007¢c
CF read_samples () 40000135
CF io_overlap() 40000155
CF power () . 400001a5
CF auto_corr() 400001bb
CF 1pcal() 400001ea
CF lpc_cepstrum() 4000023b
CF get cepstrum() 40000277
CF derivative () 400002£1
CF get_dceps () 40000316

b. Cycle counts for CPU b: unoptimized

Program Name: /usr2/speaker/jason/new/cpu_b.out

Start Address: 4000007c main, at line 43, " /usr2/speaker/jason/new/cpu_b.c
Stop Address: 40000252 exit

Run Cycles: 14204212

Profile Cycles: 14204212

BP Hits: 1002

***************************************************************************

Area Name Count Inclusive Incl-Max Exclusive Excl-Max
CF ClearMsg() 7 29953 4279 29953 4279
CF WaitFor () 9 3766 894 966 206
CF CreateMsg() 0 0 0 0 0
CF SendMsg () 2 628 314 80 40
CF RecvMsg () 7 5076 1110 308 44
CF EndMsg () 0 0 0 0 0
CF main() 1 14204205 14204205 18524 18524
CF classify() 5 14137316 3927016 14137316 3927016

******’k***************************'k****'k***********************************

Area Name Count
CF WaitFor () 9 29%
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Ccr
CF
CF
CF
CF
CF
CF

ClearMsg ()
RecvMsg ()
classify ()
SendMsqg ()
main ()
CreateMsg ()
EndMsgqg ()

o O N O g

= NN
o NN
o0 o0 o° oe

o O W
o oo

o

khkhkkhkhkhkhhkFkhhhhhhhrhkhhhhhhhrhkhhhhhhhd

CF
CF
CF
CF
CF
CF
CF
CF

Area Name
main ()
classify()
ClearMsg ()
RecvMsg ()
WaitFor ()
SendMsq ()
CreateMsg ()
EndMsqg ()

Inclusive
14204205
14137316
29953
5076
3766
628
0
0

99%
929%
<1%
<1l%
<1%
<1%

0%

0%

Ihkhkhkhhhhkhhhkhhhkhhrhhhhkhkrhhrhkhxhkhkis

CF
CF
CF
CF
CF
CF
CF
CF

Area Name
main{)
classify()
ClearMsg()
RecvMsg ()
WaitFor ()
SendMsg ()
CreateMsqg ()
EndMsg ()

Incl-Max

14204205
3927016
4279
1110

894

314

0

0

99%
27%
<1%
<1%
<1%
<1l%

0%

0%

hhkhkhhhkhhhhhkkhhkhkhrhrddhhrrhhhhhhkdkhhhhk

CF
CF
CF
CF
CF
CF
CF
CF

Area Name
classify ()
ClearMsqg ()
main ()
WaitFor ()
RecvMsg ()
SendMsg ()
CreateMsg ()
EndMsg ()

Exclusive

14137316
29953
18524

966
308
80
0

0

99%
<1%
<1%
<1%
<1l%
<1%

0%

0%

khkhkkhkhkhhhhhkhhhhhhhhhkhhhhhhhhhrhhhdk

CF
CF
CF
CF
CF
CF
CF
CF

Area Name
classify()
main()
ClearMsg ()
WaitFor ()
RecvMsqg ()
SendMsg ()
CreateMsg ()
EndMsg ()

Excl-Max

3927016
18524
4279
206

44

40

0

0

27%
<1%
<l%
<1l%
<1l%
<1l%

0%

0%

khkhkkkkhkhkk kA Ak hhhhhkhkhkhhhdhhhrkhhhhhdkh

Ak kA AR AT AARK KA I A A AT A A KA A KA AR T A kAL A K

ok k kK kAR IR A A IR AR AAAA I A A AR AA R AR XK K

Ak hkEA A KA AAA AR KA KA KA KA AT A bk A A A hdhx

Kk k kAR A A A I A A I IR I A KK IR KK ARKAARRARKRKAAR I A AR AR AR A AR AR A AR R A A bk d b bk kA vk hhkkh

CF
CF
CF
CF
CF
CF
CF

Area Name
ClearMsg ()
WaitFor ()
CreateMsqg ()
SendMsg ()
RecvMsg ()
EndMsg ()
main{)

Address
40000000
40000017
40000023
4000003a
40000051
40000069
4000007c¢c
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CF classify{() 4000015c¢

¢. Cycle counts for CPU c: unoptimized

Program Name: /usr2/speaker/jason/new/cpu_c.out

Start Address: 4000007c main, at line 42, "/usr2/speaker/jason/new/cpu c.c
Stop Address: 400003d9 exit

Run Cycles: 234697

Profile Cycles: 234697

BP Hits: 952

Ak h kA A KT I I AT A KA AR AR I A AR I AR A R A AAKR I AT A AAAR A AT I AR A AR AT Tk h kA kA h bk khdkkx

Area Name Count Inclusive Incl-Max Exclusive Excl-Max
CF ClearMsg{() 7 29953 4279 29953 4279
CF WaitFor () 15 6601 895 1806 220
CF CreateMsg() 6 12978 3591 12978 3591
CF SendMsg () 6 4094 967 240 40
CF RecvMsg () 7 5105 1115 308 44
CF EndMsg () 2 592 296 66 33
CF main{() 1 234690 234690 11167 11167
CF rasta() 28 28602 1140 28602 1140
CF get_rastal() 2 63116 34147 34514 18187
CF derivative() 30 89481 3043 84366 2822
CF get_dceps () 4 107258 44278 17177 8185

A AR KA A I A A AR R AT A A A I A IR A A A I A AR AR R R AR KA RAR KA R A AR A AR R A AR A AT A A A AT A A A A A A hhkh

Area Name . Count
CF derivative() 30 27%
CF rasta() 28 25%
CF WaitFor () 15
CF ClearMsg () 7
CF RecvMsg() . 7 6% m==m==m====
CF CreateMsg() 6 5%
CF SendMsg () 6 5%
CF get_dceps () 4 3%
CF EndMsqg () 2 1% ==
CF get_rasta() 2 1% ==
CF main () 1 <1%

KA KA A A KA AR AT I I A A IR KRR A I A AA AR KA I AR AR A A AR R A AR A A A AT AR A A AR AT ATk Ak hkkhkd bk kohk kK

Area Name Inclusive
CF main{() 234690 99%
CF get_dceps () 107258 45%
CF derivative() 89481 38%
CF get_rasta() 63116 26%
CF ClearMsg () 29953 12%
CF rasta() 28602 12%
CF CreateMsg () 12978 5% ==
CF WaitFor () 6601 2% =
CF RecvMsqg () ) 5105 2%
CF SendMsg () 4094 1%
CF EndMsg () 592 <1%

I R R R R R R T R R R R R R R R R R g R g S R R R R R R R R R R L

Area Name Incl-Max
CF main() 234690 99%
CF get_dceps () 44278 18% ======
CF get_rastal() 34147 14% =====
CF ClearMsg() 4279 1%
CF CreateMsqg() 3591 1%
CF derivative () 3043 1%
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CF rastal()

CF RecvMsg ()
CF SendMsg ()
CF WaitFor ()
CF EndMsg ()

1140
1115
967
895
296

<1%
<1%
<1%
<l%
<1%

***************************************************************************

Area Name
CF derivative()
CF get_rastal()
CF ClearMsg()
CF rasta()
CF get_dceps ()
CF CreateMsg()
CF main()
CF WaitFor ()
CF RecvMsg ()
CF SendMsqg ()
CF EndMsg ()

Exclusive

84366
34514
29953
28602
17177
12978
11167
1806
308
240
66

***************************************************************************

Area Name
CF get_rasta()
CF main()
CF get_dceps ()
CF ClearMsg()
CF CreateMsqg()
CF derivative()
CF rastal()
CF WaitFor()
CF RecvMsg ()
CF SendMsqg ()
CF EndMsg ()

Excl-Max
18187
11167

8185
4279
3591
2822
1140
220
44
40
33

<1l%
<1%
<1%
<l%

*********‘k***************************‘k*************************‘k***********

Area Name
CF ClearMsg ()
CF WaitFor ()
CF CreateMsqg ()
CF SendMsg ()
CF RecvMsg ()
CF EndMsg ()
CF main{()
CF rastal()
CF get_rasta()
CF derivative()
CF get_dceps ()

Address
40000000
40000017
40000023
4000003a
40000051
40000069
4000007¢
40000147
400001bl
4000023b
40000260

d. Cycle counts for CPU_d: unoptimized

Program Name:
Start Address:
Stop Address:
Run Cycles:
Profile Cycles:
BP Hits:

/usr2/speaker/jason/new/cpu_d.out
4000007¢ main, at line 52, ”/usr2/speaker/jason/new/cpu_d.c

40000259
14192292
14192292
268

exit

*****************************************************************‘k****‘k****

Area Name
CF ClearMsg()
CF WaitFor ()
CF CreateMsg ()

Count
10
10

0

Inclusive Incl-Max Exclusive Excl-Max

42790 4279 42790 4279
3894 894 980 206
0 0 0 0
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CF
CF
CF
CF
CF

Ak hkkhkhkhkrhkdhhhhkkdhkhkrhhkk

CF
CF

- CF

CF
CF
CF
CF
CF

SendMsg ()
RecvMsqg ()
EndMsqg ()
main()
classify()

Area Name
ClearMsg ()
RecvMsg ()
WaitFor ()
classify ()
main()
CreateMsg ()
EndMsg ()
SendMsqg ()

0
10
0
1
6

Count
10
10
10

6

o o o -

0 0

6062 1110

0 0
14192285 14192285
14136977 3926856

0
440
0
5511

14136977

0

44

0

5511
3926856

*********************************************‘k***

********************’k************************'k*****************************

CF
CF
CF
CF
CF
CF
CF
CF

*hkkhkhkhkhkkhhhk ko khkkkhkkk

CF
CF
CF
CF
CF
CF
CF
CF

********************************************************‘k****

CF
CF
CF
CF
CF
Cr
CF
CF

Area Name
main ()
classify ()
ClearMsg ()
RecvMsg ()
WaitFor ()
CreateMsg ()
EndMsg ()
SendMsqg ()

Area Name
main()
classify ()

‘ClearMsqg ()

RecvMsg ()
WaitFor ()
CreateMsg ()
EndMsg ()
SendMsg ()

Area Name
classify{()
ClearMsqg ()
main()
WaitFor ()
RecvMsg ()
CreateMsqg ()
EndMsg ()
SendMsg ()

Inclusive
14192285
14136977
42790
6062
3894
0
0
0

Incl-Max
14192285
3926856
4279
1110
894
0
0
0

Exclusive

14136977
42790
5511

980

440

0

0

0

299%
99%
<1%
<1%
<1%
0%
0%
0%

99%
<1%
<1%
<1%
<l%
0%
0%
0%

****************‘k*******************************‘k****

khkhkhkkikhkkkhkkkhk

'k*****'k***************************************'}(****************************

CF
CF
CF
CF
CF
CF
CF
CF

Area Name
classify ()
main ()
ClearMsg ()
WaitForx ()
RecvMsg ()
CreateMsg ()
EndMsq ()
SendMsg ()

Excl-Max

3926856
5511
4279

206
44
0

0

0

27%
<1%
<1%
<1%
<1%
0%
0%
0%

***************************************************************************

Area Name

Address
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CF ClearMsg() 40000000

CF WaitFor() 40000017
CF CreateMsg() 40000023
CF SendMsg () 4000003a
CF RecvMsg () 40000051
CF EndMsg () 40000069
CF main () 4000007c
CF classify() 4000018b

IIL. TRAINING OVERHEAD CYCLE COUNTS (ONLY CPU_B IS INVOLVED)

Program Name: /usr2/speaker/jason/train/cpu_b.out

Start Address: 40000000 main, at line 44, 7 /usr2/speaker/jason/train/cpu_b
~Stop Address: 40000506 exit

Run Cycles: 215866557

Profile Cycles: 215866557

BP Hits: 1455137

*******‘k*******************************************************************

Area Name Count Inclusive Incl-Max Exclusive Excl-Max
CF find mse() 351417 69931983 199 66066396 188
CF indexx () 11638 62507186 8656 62507186 8656
CF train() 2 202200462 114481606 627204 313625
CF lloyd() 26 201366948 18251509 68822399 5026066
CF ran3() 2184 197890 16276 182180 8421

********‘k******************************************************************

Area Name Count
CF find mse() 351417 96%
CF indexx () 11638 3% =
CF ran3() 2184 <1%
CF lloyd() 26 <1%
CF train() 2 <1%

*****'k*********************************************************************

Area Name Inclusive
CF train() 202200462 93%
CF lloyd() 201366948 93%
CF find mse() 69931983 32% ============
CF indexx () 62507186 28% ===========
CF ran3() 197890 <1%

***************************************************************************

Area Name . Incl-Max
CF train() 114481606 53%
CF lloyd() 18251509 8% =====
CF ran3() 16276 <1%
CF indexx() 8656 <1%
CF find mse() 199 <1%

************‘k**************************************************************

Area Name Exclusive
CF lloyd() 68822399 31%
CF find mse() 66066396 30%
CF indexx () 62507186 28%
CF train() 627204 <1%
CF ran3() 182180 <1%

***************************************************************************

Area Name Excl-Max
CF lloyd() 5026066 2%
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CF train() 313625 <1% ==

CF indexx() 8656 <1%

CF ran3() 8421 <1%

CF find mse() 188 <1%

**'k************************************************************************
Area Name Address

CF find_mse () 400000f1

CF indexx () 4000010f

CF train() 40000186

CF lloyd() 400002c4

CF ran3() 400003a7

3.5 Final Comments on the Performance Of The Spkrid Code On The Prototype

The performance results for the spkrid code on the prototype system suggests that the CPUsB and D arethe
most heavily loaded. Both of these CPUs spend the bulk of their cycles in the classify() routine. Note that
the profiler has no way of measuring the overall execution time, since it cannot time the communication
delays, and is limited to profiling one CPU at atime. Wecan, however, obtain a worst—case cycle count for
the overall spkrid recognition phase by adding up the cycle counts of the individual CPUs. For such a
worst-case scenario, the total cycle count for the recognition phase in the optimized version is:

1540988 (CPU_a) + 4466203 (CPU_b) + 151372 (CPU_c) + 4455040 (CPU_d) = 10613608 cycles.

For the 32 MHz. CPUs, this translates to a delay of roughly 301 milliseconds. Clearly, areduction of this
delay can be achieved by parallelization of the classify routine itself, requiring one or two additional CPUs.
Further gains — possibly substantial - are also possible through the overlapping of computation and
communication among the CPUs.

4. THE IMPLEMENTATION OF THE SPEECH ENHANCEMENT CODE ON THE
PROTOTYPE SYSTEM
This section describes our approach to the porting and parallelization of the RL SEU program suite and an
evaluations of the performance of the SEU code on the 4-CPU prototype system. In particular, we
describe the important changes made to the code to facilitate the implementation on the prototype without
compromising any functionality. The performance results reported here also identify the main cycle sinks

in the program in an effort to show where parallelization efforts should be directed if additional CPUs are
available for further performance enhancements.

4.1 The RL Speech Enhancement Program (SEU)

The Rome Labs SEU program suites are described in [WeAs 78, RLTR 92a, RLTR 92b], and we will thus
not describe them in any depth in this report. Basically, the SEU program suites that were supplied allow:

a) Impulse noise to be detected and attenuated - i.e., impulse noise to be removed (the Imp program).
b) Tonal noise to be extracted and removed (the HiTones program).

¢) Wideband random noise to be removed (the Intel95 program).
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In the code supplied, each program was self-contained and generally had its own complement of signal I/O
functions.

4.2 Porting of SEU Programs to the Prototype System

The SEU95 source code for each speech enhancement functions Imp, Hi_Tone and Intel95 (hereafter
called SEU programs) were ported to the 4-CPU based prototype, each torun on a single CPU. The main
reason to run one function per CPU was to allow a pipelined processing system to be set up, where these
functions can be applied in sequence to the speech sample to be cleaned up. Thus, the porting of these
functions to the *C40 code required us to address the following differences between the Unix environment
(where the supplied SEU95 code was run) and the environment for the 4-CPU prototype:

(a) Output functioncalls, such as printf, usable in the Unix version, were replaced by stores into the global memory of
the prototype system.

(b) Input function calls (such as scanf()) that are usable in the Unix version were replaced by literal data (or by
accessing data pre-stored in memory), since no explicit /O function calls are supported in the prototype.

(c) Functions in the supplied SEU95 code that used large arrays as local variables were modified to ensure that the
activation stack for the ’C40 code was confined to the CPU-internal RAM. (Confining the activation stack to the
CPU-internal RAM allows the code to execute more efficiently. The default memory map for the *C40s limit the
activation stack size to 1 K words for this reason.)

(d) Heap management inefficiencies in the *C40 environment were addressed to avoid repeated allocations and
deallocations from the heap. Generally speaking, it is probably a good idea to avoid using dynamically allocated
storage for real-time speech processing systems like the prototype, given that it isn’t easy to detect (externally)
when such memory runs out. It is also not clear as to what would be an universal way of coping with heap
overflows in such systems. Thus, when the size of a variable is known at compile-time, it should be made static.
 the maximum size of a variable is known, it should be allocated as such, so long as the size isn’t toobig. Doing so
aids in determining the required amount of memory for a given program, and certainly improves the performance
(no calls to malloc/free, no heap fragmentation and associated compaction delays).

The specific changes made to the SEU95 functions to get them running on the prototype are summarized
below:

® Asin the speaker ID port, the input sample was converted to an object file and linked into the executable, due to the
inability of the *C40 emulator to provide fast communication between the SPARChost and the prototype board. It
is expected, obviously, that this change is temporary and these changes will not be needed when an appropriate
A/D board will be available for the prototype. 4

® Any printf() calls or other I/O calls were removed or otherwise worked around, given that the *C40 library has no
such functions. For outputs, this was easy enough (most of the printf() calls were for error or warning messages).
However, the SEU programs used a“command file” for input parameters. This file was replaced with hard-coded
values. The values were the same as supplied in the test command files. Again, a fast communication facility
allowing digital I/O between the SPARC host and the prototype board will allow us to download the parameter
values directly into the RAM of the prototype, obviating the need to hard code the parameters.

® Similarly, the output from the SEU programs is also stored in memory. Specifically, the global (shared) memory
was used for input and output. This memory is limited to 128 kilowords, thus limiting the size of test samples to
around 64 kilowords. »
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® A small number of functions had large variables declared locally, i.e., on the program activation stack. Since the
’C40 default memory map only allows for a 1 kiloword stack, these variables would notfit on the stack. They were
moved outside of the function, and made global.

® Qur experience with the *C40 environment suggests that the heap management functions in the *C40 C library
don’t deal with fragmentation all that well. The main function for each SEU process dynamically allocates a
number of variables, the sizes of which do not appear to change. Modifications were made such that these
variables are only allocated once (the first call).

These changes are documented in-line in the *C40 code, included in the appendix.
4.3 Performance of the SEU Programs on the Prototype

Due to reasons identical to that listed in Section 3.4, we could only measure the cycle counts for each CPU
individually using the profiler. We now present these cycle counts for the SEU programs.

I. CYCLE COUNTS FOR THE PORTED SEU PROGRAMS: OPTIMIZED VERSION

The ported versions of the SEU95 programs Imp, Hi_Tone and Intel95 were run on the prototype, one
function per CPU, using the parameters supplied for each program in the sample inputs for the SEU95 code
as given in the “command files”. Each such run was profiled to estimate the cycle counts in various C
functions within these SEU programs. The input used for all tests was 50000 samples in length.

Note that each program typically had a number of configuration options, which were given (originally) in
command files. Itis likely that a different set of options might result in significantly different cycle counts.
Note also that profiling may inflate the overall number of cycles executed. Counts of “leaf” functions,

those that make few subroutine calls themselves, should be fairly accurate. ‘

We now present the results of profiling runs of each SEU program:

SEU Program: Imp
Overall cycles: 16,614,002

Function: ImpulseModulationProcess()
number of samples processed per call (“impIOFrameSize”): 256
total cycles (inclusive): 9,703,071
(exclusive): 6,663,576
number of calls: 196
max cycles/call (inclusive): 52,776
(exclusive): 37,221

Summary: The Imp program spends roughly 193 cycles/call/sample. (As noted earlier, changes to the
frame size and/or overlap percentage could have a profound effect on these numbers.) Of all the SEU
programs, Imp requires the least processing time. Further speedup of this program through parallelization
is thus unnecessary.

SEU Program: HiTone

Overall cycles: 120,104,860
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Function: AttenuateHiTones ()
number of samples processed per call (“htIOFrameSize”): 512
total cycles (inclusive): 112,972,161
(exclusive): 15,333,218
number of calls: 97
max cycles/call (inclusive): 1,177,451
(exclusive): 164,162

The “inclusive” cycle counts includes the time spent in all functions that are called. The “exclusive” cycle
countsreflect only the time spent in the code of the main function, and excludes the time spent within called

functions.

Summary: The HiTone program spends roughly 2274 cycles/call/sample. (As noted earlier, changes to
the frame size and/or overlap percentage could have a profound effect on these numbers.) The large
difference between inclusive and exclusive cycle counts indicate that most of the processing is done in
other functions called by HiTone. The profiling data for the major functions called within the body of
HiTone are given below:

® The Histogram function is called by AttenuateHiTones() at most once per frame. Its cycle count is negligible,
compared the cycle count for the fftd() function, as given below.

Function: Histogram()
total cycles (inclusive): 1,994,141
(exclusive): 1,992,942

number of calls: 97
max cycles/call (inclusive): 33,411
(exclusive): 33,400

® The fftd function is called twice per call to AttenuateHiTones(). This is the most cycle-intensive call:

Function: f£ftd{()
total cycles (inclusive): 75,826,054
(exclusive): 66,360,298
number of calls: 194 (twice per call to AttenuateHiTones())
max cycles/call (inclusive): 400,598
‘ (exclusive): 351,799

Thus, a clear way to speed up the HiTone program is to speed up the fftd function. There are several ways of
doing this - all involving code parallelization — but, unfortunately, additional CPUs are not available inthe
prototype to support the parallelized HiTone program, as well as the other SEU programs and, possibly, a
CPU devoted to I/O.

EU Pr : Intel
Overall cycles: 206,412,821

Function: Intel95()
number of samples processed per call (“intel95ICFrameSize”): 256

total cycles (inclusive): 199,610,302
(exclusive): 27,729,330

number of calls: 194
max cycles/call (inclusive): 1,031,677
(exclusive): 142,953

Summary: The Intel95 program spends roughly 4019 cycles/call/sample. (Again, as noted earlier,
changes to the frame size and/or overlap percentage could have a profound effect on these numbers.) Asin
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the case of HiTone, the large difference between inclusive and exclusive cycle counts indicate that most of
 the processing is done in other functions called by Intel95. Again, the bulk of the execution time of Inzel95
is spent within the function fftd. (Four calls are made to fftd by Intel95.) The profiling data for the ffrd
function called within the body of ffid are given below:
Function: fftd()
total cycles (inclusive): 141,464,519
{exclusive): 122,614,575
number of calls: 4 in Intel925()

max cycles/call (inclusive): 187,177
(exclusive): 162,880

Note that compared to HiTone, the frame size for Intel95 is halved; The time spent per call to the fftd
function in Inrel95 is less than half that the time per call to fftd in HiTone.

4.4 Final Comments on the Performance of SEU95 on the Prototype:

If all three of the SEU programs are implemented as a pipeline on the prototype, the CPU running the
Intel95 program will clearly be the bottleneck, being the slowest stage in the pipeline. One very simple
way of surmounting this bottleneck will be to use two CPUs to implement Infel95 - for example, by
splitting up the 4 calls to ffzd across the two CPUs. Assuming that such a parallelization halves the cycles
spent in the calls to fftd, the overall cycle count per call per sample for Intel95 reduces to roughly 2700
- cycles. Note that even with this parallelization, Intel95 is still the bottleneck. The pipeline processing rate
that results from the implementation of Inzel95 on two CPUs is thus 2700 cycles per sample, assuming that
inter-CPU communications are perfectly overlapped with the computations. For the 32 MHz. CPUs used
in the prototype, this reduces to a pipeline cycle time of 81 microseconds. This means that the samples
must not arrive at a rate higher than one per 81 microseconds, suggesting a peak sampling frequency of
about 12.5 KHz. The approach just described was not implementable on the 4-CPU prototype, since it
requires all 4 CPUs to be devoted to the computations, leaving no free CPU for interfacing to the A/D input
and the D/A output.

5. LESSONS LEARNED

The performance results for the Spkrid code and the SEU code does shed some light on ways to further
improve the latencies of these two programs. In particular, the following lessons were learned about the
nature of the Spkrid and the SEU code and the system as a whole:

e It was relatively easy to transform, modify and code the applications — all at the source C code level -
once a scheme for parallelizing the code had been devised.

* The main bottleneck for the speech enhancement system, running /mp, HiTones and Intel95 in a
pipelined configuration is the /nzel95 program. Thelonglatency of the Intel95 program is attributed to
the long execution time of the fftd routine. Further performance gains can be realized by parallelizing
the calls to the fftd routine and/or parallelizing the fftd routine itself.

¢ For the speaker id code, the main bottleneck is the classify routine. The only serious solution for further
performance improvement in this case can come from parallelization of the body of this code.
Fortunately, the loop level parallelism within classify is adequate for this purpose.

® The addition of just two more CPUs to the prototype cam greatly improve the usability and
performance of the system for the applications that we implemented.
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¢ The basic parallel processor development system (PPDS) hardware used for the prototype is not a good
choice for implementing a fully functional system, complete with host, A/D, D/A interfaces. This is
mainly due to the lack of a high speed connection between the host and the PPDS, as well as due to the
inability of the PPDS to accommodate standard A/D, D/A cards. The recently available DSP
multiprocessing boards based on the TMS 320C40 are better candidates for a real-time, high-end
speech processing multiprocessor.

6. CONCLUSIONS ‘

The implementation of the prototype system, including the parallel implementation of the spkrid code and
the SEU programs and the performance of these applications on the prototype indicates that the basic goals
of the project were met. However, the limitation of the prototype to just 4 CPUs precluded the |
incorporation of an A/D, D/A interface that operated inreal-time. The implementation of the Spkrid code, 1
as described, has a latency of 300 milliseconds (on the given datasets, with 14 speakers and 4 features). :
The code tables are small enough to be stored within the on-chip RAM of the CPUs, allowing for some
performance gains. The SEU programs can all be implemented in a pipelined chain, and the resulting
system allows for a sampling frequency up to 12 KHz. This is beyond the currently-used sampling
frequency of 10 KHz. A more usable system should incorporate atleast two more CPUs to allow front and
back-end functions to be implemented.
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